
3/11/2013, 台北l

Gordon Li

Agenda
 Welcome and Overview

 Multi-Device App Development

 10 Times Faster's Productivity - FireMonkey For iOS

 Break

 Super Powerful Engine For Your Codes - New And

Next Generation Compilers for C++Builder And

Delphi

 Smart Data Access For your Smart Devices - Visual

LiveBindings

 Summary and Q&A

 “Multi-Device” App Development

 “Real Code” Native Device Machine Code

 Enterprise Ready

 Standard Languages

4

Embarcadero
Developer Tools Strategy 2013+

- 52 Billion lines of code per year

- $28 USD avg per line of GA
code

- $1.5 Trillion WW per year spent
developing source code

*Evans Data
5

16 Million Developers World
Wide*

Embarcadero Developer
Value

- 3m Developer Community

- 9.7 Billion LOC per year -
Saving 48 billion LOC/yr

- effective $5.60 per line of
code (vs industry std $28/LOC)

- $220 Billion in annual
developer savings

6

Up to 80% less code per project

7

Embarcadero’s Method to Success on Windows:

C++ & Delphi

VCL

- Component Base
Frameworks

- Visual Development

- Simplified abstraction of
WinAPIs

Eg. collapse 100 lines of common Win
API / MFC functionality into a single
method or property

- RAD infused standard
languages

- Make hard things easy

80% code savings via

 Evolution of the Client
Landscape

Windows

1999

Windows & Web

2005 2

W

2013: The Client Revolution

Windows Web Mobile Mac

Today’s Unprecedented Multi-Device
Landscape

1 Billion 65 Million 1 Billion 2 Billion

The Client Revolution

An Unprecedented Multi-Device Landscape

When will Tablets surpass
Notebooks?

11

July 2012
Analysts Predict Tablets will surpass Laptops
in 2016
September 2012
Analysts Predict Tablets will surpass Laptops
in 2015
January 2013
Analysts Predict Tablets will surpass Laptops
in ……

12

When will Tablets surpass
Notebooks?

This year.

2013+

Client Device Diversity Will Continue to Expand

14

Rapid Multi-Device Development

vs

Vendor Tools
Traditional Cross-Platform

HTML5
“Platform Native” Virtual Code

Vendor Tool Approach for Targeting Multiple Devices

$ $ $ $

C# or C++

.NET or MFC

C++ or Obj-C

OSX SDK

C++ or Obj-C

iOS SDK

Java

Android SDK

?

16

Traditional “Like to Like” Cross-platform

QT, WXWidgets

$ $

C++

Desktop
Framework

C++

Mobile
Framework

Future

?

17

HTML5 Cross-platform

$

Adobe, Sencha, Kendo, HTML5Builder

HTML5/JavaScri
pt

PhoneGAP
SDK

Future

?

So-called “Platform Native” virtual code

$ $ $

Common Programming Language

Platform
SDK

Platform
SDK

Platform
SDK

Appcellerator, Xamarin Mono, Oxygene (Prism)

Future

Multi-Device
Development

Single Source Native Targeting Both PC and Mobile
Devices

19

Introducing…

20

Embarcadero: Multi-Device App Development

$

Future

C++ or Delphi

FM2 Framework

PC – Phone – Tablet - More

Platforms: Windows, Mac, iOS, Android

Form factors: PC, Phone, Tablet, Mini-Tablet, iPod,
Phablet

Audience: ISV to Enterprise – targeting multiple
devices

Connectivity: Enterprise Database Connectivity &
Flexible Middleware

2013+

SmartTVs, Car Infotainment, Home Automation,
Smart Watches, and more

21

Multi-Device

Real Code
vs

Virtual Code

22

Real Code vs Virtual Code

23

Real
Code

ARM CPU ARM CPU

Software Virtual CPU
aka Virtual Machine

(VM)

Virtual
Code

“Anyone remember VB?”

Tunability:
App is limited
by the preset
capabilities of
the VM.

Performance:
App runs
within a
software
machine
process
running on
the device.

Predictability:
Memory is
automatically
garbage
collected -
when full and
when the VM
decides it’s
time. Not the
dev.

User Experience: Virtual Apps are
oblivious to device specs. Device
vendors (Apple, Samsung, etc)
spend countless engineering &
dollars tuning & squeezing great
UX into a device based on limited
CPU, battery, and memory.

vs

C, C++, Obj-C
Delphi

HTML5/JavaScri
pt, Java, .NET,
Mono

Real Code
Native Device Applications
Intel/ARM Machine Code
Maximum Performance
Highly tunable
Smallest Possible Footprint
Low Latency
Developer sched mem mgmt

24

Virtual Code
Virtual Device Application
Virtual Machine Code
Medium to Slow Performance
Limited tunability
Large Runtime Footprint
Med to High Latency
Runtime scheduled mem mgmt

Languages:
C++, Obj-C, C, Delphi

Languages:
HTML5/JavaScript, C#,
Oxygene/Prism, Java, Mono
C#

Best Suited for:
User/Client Apps
Embedded Applications
Real-time Applications

Best Suited for:
Web Server Applications
Browser based
Applications

Low Latency = Great UX

25

Real

App

Device HW

UX Time

Action Reaction

Low Latency

High Latency UX is accepted in
Browser

26

Web Browser

UX Time

Reaction

Software Virtual Machine/Interpreter/JIT

HTML/Ja
vascript

Internet

Action

High Latency

Unacceptable in Apps

27

Device HW

UX Time

Action
Reaction

Software Virtual Machine/Interpreter/JIT

Virtual
Code

High Latency

“The biggest mistake we made as a company
was betting too much on HTML5 as opposed to

native”
Mark Zuckerberg - Facebook CEO

“Apple unbundling the (Java) runtime will erase
a large number of security vulnerabilities”

AppleInsider 2011

"One of the biggest advantages we've gained
from building on native iOS has been the ability

to make the app fast.
Jonathan Dann – Facebook 2012

"We are currently unaware of a practical solution
to this (Java vulnerability) problem”

U.S. Department of Homeland Security 2013

Virtual Code is for Servers &
Browsers

29

Servers & Browsers Client Devices

Code Safety & Protection is Paramount
Ability to Scale Performance via HW
Web UX typically network bound

UX Performance is Paramount
Fixed/Deployed HW Profiles
UX typically HW bound

Java, .NET, HTML5, JavaScript C++, Obj-C, Delphi

Real “Native” Code = Great
App UX

30

Real
Code

Device HW

Software Virtual
Machine/Interpreter/JIT

Device HW

Virtual
Code

Java, .NET, JavaScript C++, Obj-C, Delphi

31

Embarcadero: Multi-Device App Development

 HTML5 Cross
Platform

“Platform
Native”

Platform Vendor
Tools

Rapid Multi-Device

Examples
Adobe, Sencha,

Kendo,
HTML5Builder

Appcellerator,
Xamarin

Mono

XCode, Visual
Studio, Eclipse

Embarcadero
RADStudio

Platforms iOS/Android iOS/Android

Win or Mac/iOS
or Android

(Sep IDE, lang, & SDK
for ea platform)

Mac/Win/iOS &
Android* (2013)

Native “Real Code” No No Yes Yes

Native Platform API
Access

No (PhoneGap) Yes Yes Yes

Single Source Multi-
Vendor Targeting

Yes No No Yes

Single IDE Yes/Plugin Yes/Plugin No Yes

Single Project Multiple Multiple Multiple Yes

App Performance Low Low High High

App Number Crunching
Power

Low Low High High

App Capacity (mem/data) Low Low/Med High High

App UX (User Experience) Low/Med Med High High

Enterprise Connectivity Low Low High High

High Performance: Ideal for number crunching

Low Latency: Highly responsive native user
experience (UX)

Control Hardware: Talk directly to ext peripherals and
gadgets

Predictable: Developer is in control of App
performance

Small Footprint: Ideal for small fixed size devices

32

Real Code

Industry Standard: C++

Easy to Learn: Delphi

High Performance: C++ and Delphi

Millions of Developers: C++ and Delphi

33

Standard Languages

34

When we launched XE2, we say…

Win Mac iOS

VCL

FM

Delphi FireMonkey on iOS
• iOS Native Style

• Familiar Delphi workflow

37

New Compiler Architecture

Open IR

C/C++

Delphi

Intel

ARM

Delphi Multi-Device Unique Features

 FireMonkey for Desktop and Mobile

 Same UI controls, some specific ones

 Enhanced Delphi Language

 Compiled for ARM devices

 Development of new compiler architecture

 New modern languages features coming,

better for new comers (and for all)

 Target new Delphi users

OS Support for iOS Development

 Mac OS X – “Lion” and “Mountain Lion”

 iOS 5.1 and 6.x

Delphi Workflow

 Use Delphi or RAD Studio IDE on

Windows

 Requires a Mac OS X
 XCode installed

 Apple Developer account

 Provisioned devices

 PA Server installed

 Very different from Delphi XE2 workflow

 XCode compilation + FP + XCode debugging

Built-in Mobile Application Wizard

 Start with a blank HD or 3D FireMonkey

application

 Choose from Tabbed Application, Header/Footer

and Master/Detail Templates

IDE deployment options for iOS

Deploy iOS apps to the Simulator

 iPhone (Retina/non-Retina)

 iPhone 5 (Retina/non-Retina)

 iPad (Retina/non-Retina)

Deploy iOS apps to the Device

 Debug (debug/deploy to device)

 Ad-hoc (distribute within own enterprise)

 App Store (deploy to the App Store)

Defining Application Settings

• Define device support in Project->Options

• Select app icons for iPhone/iPad/App Store in

Project-> Options

Delphi for iOS Demo

Your first Delphi for iOS “Hello

World!”
 To see how easy it is to develop iOS App with

Delphi for iOS

 To demonstrate the whole development

process

44

Native and Custom Styling

Native and Custom Styling

 Support for custom tab icons

 Support for Retina images

 “StyleLookup” property

Native iOS controls and support

 Message alerts

 Custom Picker

 Date Picker

 Phone Dialer Support

 iOS Keyboards

 Text Editing for TMemo and Tedit
 Cut/Copy/Paste/Zoom

Delphi for iOS Demo

Delphi for iOS supports iOS native controls
 Custom Picker and Date Picker demos

 Phone Dialer Demo

 Text and Keyboards Demo

 48

Layout Management

 Alignment

 Anchors

 Form Family for loading the

correct form depending on

the target device when

developing different forms for

iPhone vs iPad/Landscape vs

Portrait

Gestures

 Swipe

 Tap

 Pinch & Zoom

 Tap & Hold

 Double-Tap

Extended Action Support

• Accessing the Camera App

• Accessing/retrieve from the Camera Roll

• Share Sheet functionality (share content

i.e. photos via Message (SMS), Mail,

Facebook, Twitter, print via AirPrint etc.)

• Slide Transitions for Tab Items in

TabControl

Sensors

Orientation Sensor (Gyroscope/Compass)

 Get X,Y,Z tilt values

 Get X, Y, Z distance values

Motion Sensor (Accelerometer)

Used to detect motion in your application as

you move your iOS device

 Get Acceleration Values and Angle

Acceleration Values (X, Y, Z)

 Determine Speed

 Determine Motion

Location Sensor

• Get location of your iOS device using latitude and longitude

• Use Reverse Geocoding to convert location data to a readable address

• Works across Win/Mac/iOS

• Can be used with the WebBrowser component to display a location on the

map

Commonly used in applications that require location awareness

Camera

Provides access to camera sensors:

 activate flash

 get sensor position etc.

 access front/back camera

iOS Services

Notification Center

We support local notifications in XE3.5. The following notifications are
supported:

 Sending scheduled notification

 Presenting a local notification immediately

 Canceling of all notifications

 Canceling of specified scheduled local notification

 Setting of badge number for application icon

 Resetting of badge number for application icon

Key Basic Notification or Alert Styles
 Badge on Application Icon

 Notification Banner on iPad

 Notification Alert

 Notification Center on iPad

Delphi for iOS Demo

 Camera and Photo Library Demo

 Sensor Demo

 Location Demo

 59

Delphi for iOS Demo

 More demos

 TabControl demo

○ Animation

○ Effects

○ WebBrowser

○ Style

60

Delphi “NextGen” Compiler

 New Compiler Architecture
 {$IFDEF NEXTGEN}

 LLVM
 http://llvm.org/

 Used also by Apple

 Multiple back ends (ARM included)

 Two active (classic, nextgen):
 Win32 / Win64 / Mac 32 / iOS emulator = classic

 iOS / Android when available = nextgenDelphi
compilers

NextGen Compiler Changes

Rationale
 Optimize for mobile (memory and more)

 Simplify language for new developers
(benefits all)

 Clean-up language quirks

Practical effects
 String types cleanup and changes

 Reference counting for objects (ARC)

 More (to avoid): with, pointers, static arrays

String Type

 One string type, like UnicodeString

 No native one-byte string type

 Implemented as reference-counted,

immutable strings

 By default:

 {$ZEROBASEDSTRINGS ON}

 {$WARN IMMUTABLE_STRINGS OFF}

 Key role of string type helper

(TStringHelper)

String Type Compatibility

Use TBytes for one-byte strings
 Possibly new features to make this easier

For immutable, use TStringBuilder
in loops

For zero-based
 Use new XE3 string helper (0-based)

 Use traditional RTL functions (1-based)

 For loops from “Low” to “High”

 …change compiler directive

ARC

 ARC (Automatic Reference Counting)

 http://clang.llvm.org/docs/AutomaticReference

Counting.html

 All objects are referenced, destroyed

when there are no standing references

 Similar to interface reference counting

 Weak reference concept (weak attribute)

 Const parameters and unsafe results

ARC & Compatibility

 Classic try-finally blocks and free child in

destructor still work on nextgen
 Although they are useless / not needed

 Free = set to nil

 New “Dispose” pattern (still coming)

 Attributes are ignored on classic
 Can have [weak] in all code

 Check with {$IFDEF AUTOREFCOUNT}
 Although you’d want to minimize them

Other Language Changes

Pointers
 Remove all pointers, if you can

 Avoid pointers to objects (because of ARC)

 Use generic lists, rather than plain TList

Arrays
 Replace static arrays with dynamic arrays

With
 Going, going… still not gone!

iOS Device

71

Enterprise Ready

FM

InterBase
or SQLLite

FireDAC

DataSnap

Oracle
MSSQL
DB2
Sybase
& more...

Your
App

Server
Method

s

FireDAC

C++ or
Delphi

Visual LiveBindings

 Bind controls to data

 Rapid Prototyping

Local Databases

SQLite InterBase ToGo

Free Commercial

Feature light Fully featured

No security Secure Encryption

Simple Data Storage Full SQL-92 RDBMS

Single read/write Fast multi read/write

Multitier Development

 Accessing remote services

 Connecting to DataSnap servers from an iOS

device

DataSnap Server Database
Delphi for iOS app

Delphi for iOS Demo

 RESTful + JSON Demo

 XML Demo

 Delphi Feeds

75

Introducing FireDAC INTRODUCING FIREDAC

Key FireDAC Features

• Data Access Engine
• Foundation classes + TDataSet comps

• High Performance Data Access
• From Live Data Window to Array DML

• Unified API
• SQL abstraction and scripting
• Unified errors and transations

Native FireDAC Drivers

• MySQL
• Microsoft SQL

Server
• Oracle Database
• InterBase
• PostgreSQL
• DataSnap
• SQLite

• Sybase SQL
Anywhere

• Microsoft Access
• IBM DB2 Server
• Firebird
• Advantage Database
• ODBC gateway
• dbExpress gateway

FireDAC Overview

FireDAC Core Components

• TADConnection: connection to a database
• TADTransaction: transaction in a connection
• TADMemTable: in-memory dataset
• TADQuery: executes a SQL commands and

returns result sets
• TADStoredProc: executes a stored procedure
• TADTable: open table data for navigation
• TADScript: executing SQL scripts

FireDAC 101 Demo

• Simplest demo
• Connection
• Query
• DS + Grid

• Fully working
• In-memory dataset built in

(local sorting OnTitleClick)
• Cached updates optional (use Apply if On)
• Requires ADPhysIBDriverLink

Configurations and Connections

• ADExplorer
• Stand alone

configuration editor
• AdConnectionDefs.ini
• FireDAC Connection

• Editor (IDE)
• ADConnection component configuration
• Rich set of options, information, settings

• Connections can be in code

Query Editor

• Manages SQL query,
parameters, options

• Integrated preview

FireDAC Tracing

• TADMoniFlatFileClientLink: Text file
• TADMoniRemoteClientLink: ADMonitor
• Enable with

• Tracing to True
• MonitorBy=FlatFile or Remote in

connection settings
• (See DacIntro demo)

FireDAC Options System

• About 60 options
• FetchOptions – rows fetching
• FormatOptions – data type handling
• ResourceOptions – resource usage and more
• UpdateOptions – how FireDAC will post

updates
• Option values are inheritable

• From connection to datasets (shareable
datasets)

Data Type Mapping

• Custom mapping by connection or dataset
visually

• Or in code
 with ADConnection1.FormatOptions do begin
 OwnMapRules := True;
 with MapRules.Add do begin
 SourceDataType := dtFmtBCD;
 PrecMin := 10;
 PrecMax := 10;
 TargetDataType := dtInt32;

Rowset Fetching

• Number of records per network round trip
• The slower the network, the more it help
• Controlled by FetchOptions.RowsetSize
• 100K records

• RowsetSize = 1 -> 7,5 sec
• RowsetSize = 100 -> 0.65 sec

ADMemTable

• ADQuery has caching support
• Use ADMemTable to keep data snapshot in

memory, load multiple
• Can also use ClientDataset and Provider, for

compatibilty

• Demo FireDACMemTable

FireDAC Array DML

• Execute N INSERT / UPDATE / DELETE
parameterized commands as a single unit

• Universal, simple, effective and convenient
• Each parameter stores array of values
• Great on slow networks, weak servers
• INSERT of 10K of records:

• Array DML -> 0,03 sec
• Normal ExecSQL -> 5.5 sec

FireDAC Async Execution
• Long running operations may run

asynchronously or with time restriction
• ResourceOptions.CmdExecMode: operation

execution modes
• ResourceOptions.CmdExecTimeout:

operation execution timeout
• TADGUIxFormAsyncDlg, CmdExecMode =

amCancelDialog – end user solution
• AbortJob – cancels an operation

FireDAC SQL Processing

• Escape functions: single expression for any DB
• Conditional escapes: write SQL parts

differently for specific DB’s:
• {IF Oracle} SELECT * FROM “Region” {fi}

• Macros: substitute variables extending
parameters usage

• Full scripting support

FireDAC Automatic Editing

• Generator is aware of DBMS SQL dialects and
features

• No need to specify update SQL commands,
generated automatically for the target DBMS

• TADUpdateSQL is available but optional

FireDAC AutoInc Handling

• Recognizes IDENTITY and similar columns
• Recognizes columns with BEFORE INSERT

trigger filling the column from a generator
• Automatically refreshes posted new records
• Works for immediate updates and for cached

updates

Wait, There is More!
• TADTable with the Live Data Window mode
• Powerful in-memory datasets with sorting,

filtering, locating, aggregates
• Connection online and offline modes and

automatic connection recovery
• Multiple transactions support
• Error reporting and database events support
• Database backup, restore, validate, repair

support
• Connection pooling

FireDAC Availability

• Included in Enterprise Editions
• Also for existing XE3 customers

• FireDAC C/S Pack add-on for XE3 Professional
Edition customers
• Maintenance is included
• Maintenance on base product is highly

recommended

FireDAC Summary

• A set of Universal Data Access Components
• High-performance, easy-to-use, enterprise

connectivity
• Universal Data Access with many database

specific features

Delphi for iOS Demo

 Database demos

 TClientDataSet Demo : SimpleCDSApp2

 Livebinding Demo

97

Q & A

Questions?

99

